@tk
§7 実数の性質 II
今回は §6 の続きです。実数の連続性公理と同値な性質を紹介しながら、実数全体からなる集合 (実数空間1) の持つ基本的な性質を紹介していきたいと思います。
初等解析学の「始め方」
我々が考えようとしているのは主に「実関数の微積分」であり、基本的に「実数に対して定義された実数値の関数」を相手にしていく事になります。今はその準備段階として、数列の収束性や実数の性質等を扱っています。
実数に対して定義された関数の事を調べるためには、まずその「実数」について十分把握しておかなければなりません。そこで、現代数学においては、「実数空間 とは以下の性質を満たす集合の事である」と定義 (約束) し、これらの性質を実数の公理として (正しいルールとして) 認めた上で議論を進めていくのが標準的です23… 続きを読む